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BACKGROUND: Optimization of mixture analyses is critical to assess potential impacts of human exposures to multiple pollutants. Single-index regres-
sion methods quantify total mixture association and chemical component contributions. Single-index methods include several variants of quantile
g-computation (QGC) and weighted quantile sum regression (WQSr), though each has limitations.

OBJECTIVES: We developed a novel permutation test for WQSr and compared its performance to extant versions of WQSr and QGC in simulation
studies and an analysis of prenatal phthalates and childhood cognition.

METHODS: WQSr uses ensemble nonlinear optimization to identify weights for mixture exposures in an index associated with the outcome in a pre-
specified direction, with ensembles based on bootstrap resampling (WQSBS) or random subsetting of exposures (WQSRS). Statistical significance
can be assessed without splitting the data (Nosplit), by splitting the data into training and test sets (Split), by repeatedly holding out test sets (RH), or
by using a novel permutation test (PT) to obtain a more accurate p-value. QGC instead provides a sum mixture coefficient and component coefficients
with no constraints on direction. In simulations, we compared false positive rates (FPR) and power to detect true associations and accuracy in estimat-
ing mixture weights. We also estimated associations between prenatal phthalate mixtures and childhood IQ in the Conditions Affecting
Neurocognitive Development and Learning in Early Childhood cohort using each method.

RESULTS: FPR was well controlled at ≤7% in all but the Nosplit WQSr variants. Among these methods, the WQSBS and WQSRS PT variants had
the highest power (89%–98%), with lower power for QGC (85%–93%) and RH (60%–97%) or Split WQSr variants (40%–78%). WQSr methods esti-
mated mixture weights 2–4 times more accurately than the QGC method. Coefficients for mixture associations with full scale IQ varied 3- to 4-fold
across analytic methods.

DISCUSSION:WQSr paired with our novel permutation test best balanced power and false positive rate when assessing a mixture effect. As new meth-
ods develop, each should be examined for performance and applicability. https://doi.org/10.1289/EHP10570

Introduction
Traditionally, epidemiology and toxicology have both focused on
evaluating the potential effects of individual exposures, though in
reality environmental exposures occur in complex mixtures.1

Given that the diseases with the highest global burden are primar-
ily predicted by environmental exposures rather than genetics,
there has been a paradigm shift away from a “single exposure”
framework to attempt to evaluate the health effects of the “expo-
some,” which is the sum total mixture of all environmental expo-
sures over an individual’s lifetime.2,3 Inferring relationships
between health outcomes and multiple simultaneous exposures
can provide benefits over the more traditional approach of analyz-
ing each exposure individually, such as the ability to estimate cu-
mulative health effects, to more accurately model the effects of
codependent mixture components in real-world exposures, and to
inform interventions that are both more realistic and potentially

more efficient.4 When evaluating a mixture, one can not only
assess the effect of some aggregate mixture measure treated as a
single exposure such as the molar sum of all mixture component
exposure concentrations, but also the sum of the individual and/
or joint effects of each mixture component.5 A popular approach
to address the latter question is to model a single index that repre-
sents the sum of linear effects of each mixture component.

Weighted quantile sum regression (WQSr) is a single-index
method that estimates a combined mixture sum effect as well as
weights determining each individual mixture component’s contri-
butions to that sum effect.6,7 WQSr estimates a mixture effect in
only one direction at a time, which is done to avoid any apparent
canceling out of mixture associations in the case of competing,
bidirectional mixture effects.6 The authors of this method provide
an illustrative example in which one can consume both alcohol to
impair alertness and then consume coffee to nullify that deficit in
alertness, but the individual is not the same as before the con-
sumption of those agents. Therefore estimating a zero effect over-
all would be erroneous and would differ from conclusions when
evaluating the effects of both alcohol and coffee in each direction
sequentially.8 However, WQSr features a statistical power and
Type I error (i.e., false positive) rate trade-off that is common to
all ensemble statistical methods, because there are separate stages
to estimate the mixture weights and the sum effect. If all data are
used to estimate both the mixture component weights and the
regression coefficients, there is high power but also a high false
positive rate because coefficient p-values are calculated for a
weighted mixture independent variable calculated using weights
that have already been optimized to find a large effect. As a
result, it is recommended to split the data into training and valida-
tion sets,6,7 but this approach reduces statistical power in estimat-
ing the linear model coefficients since the sample size being used
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in the linear model is reduced. One proposed method for address-
ing this issue is the repeated holdout WQSr, which repeatedly
splits the data into training and validation sets, obtaining a series
of iterative weight and coefficient estimates.9

We recently proposed an alternative method based on a
permutation test that should reliably allow for both higher
power and lower false positive rate when using the WQSr.10,11

Permutation tests are a class of nonparametric statistical tests that
were first introduced by Sir Ronald Fisher, who demonstrated
that one could flexibly test for a difference in means by permuting
observations and observing how many times the observed differ-
ence in means exceeded the original observed difference, in effect
directly testing the null hypothesis.12 For multivariate linear
regression models, several variations on permutation tests have
been proposed, with multiple simulation comparisons finding that
the method proposed by Freedman and Lane13 performs among
the best in preserving statistical power and low false positive
rate.14,15 The Freedman and Lane method involves first obtaining
a test statistic for the independent variable of interest, such as a t-
or z-statistic, from a regression of the full model. Then the de-
pendent variable is regressed only on the covariates, obtaining
predicted dependent variable values and residuals. The residuals
are then permuted and added to the predicted dependent variable
values to obtain new dependent variable values, which are
regressed on the full model again. These steps are performed iter-
atively to obtain a null distribution of test statistics for the coeffi-
cient of interest. Our approach is similar, but in each iteration the
full WQSr is performed without splitting the data into training
and validation data sets, and because the test statistic will be bi-
ased due to the lack of splitting the data, we instead iteratively
sample from a null distribution of mixture coefficient estimates.

Another recently proposed single-index model is quantile
g-computation (QGC), which constructs an overall mixture effect
coefficient that is the sum of the mixture effect in both directions
combined.16 This overall mixture effect is limited in that compet-
ing mixture effects are zeroed out, which the unidirectional
approach of WQSr explicitly aims to avoid.8 QGC involves per-
forming an ordinary least squares multiple linear regression
including all mixture exposure components and covariates as inde-
pendent variables. The bidirectional mixture coefficient is then the
sum of the individual coefficients for the mixture components and
the variance of this mixture coefficient derived from the variances
and covariances of coefficient estimates for all mixture compo-
nents. Initial simulations suggest strong performance for the over-
all mixture coefficient in models with no covariates and having at
most two mixture components with nonnull coefficients.

Though previous studies have provided simulations validating
and comparing the performance of at least one form of WQSr
against one or more other related models,16,17 to our knowledge, no
study has systematically validated and compared the most current
forms of WQSr and QGC in the context of their most important
model output. We aimed to address this gap by using simulations to
compare our novel permutation testWQSrmethod against the other
similar single-index mixture methods currently in the literature,
including recent advancements not previously directly compared
against each other. In addition to the standard implementations of
WQSr with and without the permutation test, we included the
recently introduced random subset WQSr models,17 which provide
an alternate strategy for mixture component weight estimation, as
well as repeated holdoutWQSrmodels, whichwere never evaluated
formodel performance in simulations,9 aswell as quantile g-compu-
tationmodels. To highlight how results from these differentmethods
can vary, we used real data from the Environmental Influences
on Child Health Outcomes (ECHO) PATHWAYS Conditions
Affecting Neurocognitive Development and Learning in Early

Childhood (CANDLE) cohort to assess prenatal phthalate mixture
exposure associations with age 4–6 y full scale IQ (FSIQ) using all
assessed single-index mixture methods. These simulations will
allow us to determine which methods perform best in detecting and
quantifying an additive mixture effect under realistic modeling sce-
narios, thereby choosing a method best suited to improving our
understanding of how real-worldmixtures impact health.

Methods

Weighted Quantile Sum Regressions
Mathematical formulation. Weighted quantile sum (WQS)
regressions were developed to assess the additive linear mixture
association in either the positive or negative direction of an expo-
sure mixture with an outcome.6 A simplified form of this model
is shown in Equation 1. Weights for each mixture component w
are combined with quantile-transformed exposure data Xq to
form a weighted index called a weighted quantile sum (WQS)
[Equation 1 (2)]. The outcome variable y is then regressed on the
WQS and covariates Z to obtain model coefficients [Equation 1
(1)]. Model estimation is accomplished in two stages. This first
stage uses bootstrapping of observations and a nonlinear optimi-
zation algorithm to determine mixture component weights that,
when combined with the exposure data to generate a WQS, maxi-
mize the likelihood of the model shown in Equation 1 (1). The
second stage selects the weights from the first stage that resulted
in either a positive or negative mixture coefficient, then combines
a weighted sum of that vector of weights with the exposure data
to get a final WQS that is then fed into a final linear model
[Equation 1 (1)] to obtain a mixture coefficient b1.

If there is little or no signal in the specified direction and a
strong signal in the opposite direction, the first stage may return no
mixture coefficients in the specified direction and thus the model
will return no estimates. Thismodel “failure” is not due to the algo-
rithm not converging, but rather the aforementioned lack of iter-
ated mixture coefficients in the specified direction, making it
impossible to derive weights in that direction when using this algo-
rithm.We interpret this as equivalent to the model returning a zero
b1 coefficient. Directionality in the model is controlled by two
inputs in the gWQS R package implementation of the WQSr. The
“b1_pos” input chooses the direction by determining whether posi-
tive or negative bootstrapped mixture coefficient values and their
associated mixture weights are selected for calculating the WQS
for the second stage. There is also an additional constraint parame-
ter “b1_constr” that does not constrain all bootstrapped mixture
coefficients to be in a particular direction but instead increases the
probability that bootstrapped mixture coefficients will be in the
direction specified by “b1_pos”; therefore, setting “b1_constr” to
be true decreases the probability that the first stage of the model
will return no estimates in the specified direction and fail to return
estimates. An illustration of the effect of the “b1_constr” parameter
on bootstrapped mixture coefficient values is shown in Figure S1,
and additional technical details are described in supplemental ma-
terial section titled, “Additional Information about Bootstrap
WeightedQuantile SumRegressions (WQSBS).”

ð1Þ y= b0 +WQS � b1 + Z � c+ e
ð2ÞWQS=Xq � w (1)

Approaches to Assessing Uncertainty
Estimation of statistical uncertainty for b1 is complicated by the
fact that the data are used twice, once to optimize the WQS
weights and a second time to estimate b1. A naïve approach
(which we refer to as WQSBS_Nosplit) treats the weights as
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fixed and uses model-based or robust sandwich standard errors
(SEs) to estimate p-values and 95% confidence intervals (CIs) for
b1.

18 This approach is expected to underestimate uncertainty and
result in inflated Type 1 error rates, and it is explicitly advised
against by the authors of the WQS regression.6,19 Nevertheless,
this approach has been used in several studies, and so it is worth-
while to estimate the extent of the Type 1 error issues with this
approach.20–22 Data can be split into a training set for the first
stage and a validation set for the second stage (WQSBS_Split),
which should result in nominal confidence interval coverage and
false positive rate, though at the cost of reduced power. Which
data are selected randomly into the training and validation data
sets can impact model weight and coefficient estimates,23 and so
an alternate strategy proposed is to repeatedly perform random
splits in a process known as repeated holdout WQSr, which we
refer to as WQSBS_RH.9 The mean of the WQS coefficient (b1)
values across all repeated holdout iterations is the point estimate,
and the standard deviation of these values is the corresponding
SE estimate. For situations in which any iterated model run fails
to return estimates in the specified direction as previously
described, the entire repeated holdout model also will not return
estimates in that direction, which we treat as returning a b1 coeffi-
cient of zero. For greater numbers of mixture components, an
innovation on bootstrapped WQSr called random subset WQSr
(WQSRS) was proposed in which, instead of bootstrapping
observations, random subsets of mixture components (i.e., col-
umns of Xq) are selected for each iteration during the weight esti-
mation stage.17

We hypothesized that we could preserve the statistical power
or low Type II error rate of Nosplit WQSr along with the nominal
false positive rate of split WQSr by using a modified form of the
permutation test to calculate p-values for the mixture coefficient.
The permutation test is a method of obtaining a p-value by simu-
lating the null distribution through permutations of the data. We
modified the Freedman and Lane method for applying permuta-
tion tests to coefficients in multiple linear regressions.13 The
modified Freedman and Lane permutation test algorithm we
employed is as follows:

1. Run a WQS regression in the specified direction without
splitting the data (i.e., a Nosplit WQSr), thereby obtaining
a WQS coefficient estimate for the WQS coefficient, bref .

2. Using an ordinary least squares linear regression, regress
the outcome on all covariates Z but not the WQS variable,
and then obtain the predicted outcome values ðbyÞ and their
residuals (ryjZ) from this regression.

3. Randomly permute the residual values r�yjZ and then add
them to the unpermuted predicted outcome values by to get
the new outcome variable vector y� (y� = by + r�yjZ).

4. Run a WQS regression in the specified direction without
splitting the data in which y� replaces the vector of observed
outcome variables, obtaining aWQS coefficient b�.

5. Repeat steps 3 and 4 np times to obtain a distribution of b�
values.

6. WQS regressions can at times fail to obtain a coefficient in
the specified direction when there is little or no signal in
that direction, and so we treat those iterations that don’t
return a b� value as zero values.

7. Calculate the p-value for the WQS coefficient obtained
in step 1 as the proportion of b� values >bref (length
(b� >bref )/np) if the specified direction is positive or the
proportion of b� values <bref (length(b� <bref )/np) if the
specified direction is negative.

We chose the WQS coefficient value as the reference value
for the permutation test p-value rather than a pivotal value such
as the t-statistic14 because the latter value relies on a proper SE

estimate, which WQS regression does not give when the data are
not split into training and validation sets. For each model, we
repeated this process 200 times (np =200), and each WQS regres-
sion repeated for step 4 was run with 100 bootstraps, the default
number in the gWQS R package (version 3.0.4; https://cran.r-
project.org/web/packages/gWQS). Iterations in which the WQSr
does not return any WQS coefficients from the first stage in the
specified direction are treated as having a zero b1 value for that
iteration, and the p-value is calculated accordingly. This permuta-
tion test is used in combination with the Nosplit WQSr to obtain
a new p-value for the mixture coefficient, and the other estimates
such as coefficients and mixture weights from this model are
identical to those of the Nosplit WQSr. The accompanying R
package wqspt implements this permutation test for the WQS
regression.

Quantile G-Computation
QGC models are proposed as alternatives to WQSr, in which
quantile-transformed exposure variables are treated as independent
variables in a multiple linear regression, and the summixture effect
of the exposure mixture is the sum of all individual mixture coeffi-
cients b.16 As shown in Equation 2, this overall mixture coefficient
w is bidirectional in that it is the summixture effect in both positive
and negative directions. This differs from WQSr in that WQSr
gives directional, i.e., positive or negative, mixture coefficients but
lacks a mechanism for estimating the overall mixture effect.
However, the WQS coefficient from WQSr and w from QGC
regression should be comparable if mixture effects are unidirec-
tional. The confidence intervals for w are either bootstrapped
(QGC_Boot) or based on a normal confidence interval calculation,
where the variance of w is derived from the covariance matrix for
all coefficients of the quantile-transformedmixture exposure varia-
bles in thematrixXq (QGC_Noboot).

ð1Þ y=b0 +Xq � b+ Z � c+ e
ð2Þ w=

Pm
i=1 bi

(2)

Simulation Parameters
Data were simulated based on Equation 1, where X and Z were
randomly generated as a single multivariate normally distributed
matrix of 10 mixture components (X) and 10 covariates (Z) with
means of zero, variances of 1, and covariances of either 0 (uncor-
related) or a correlation matrix derived from 10 urinary phthalate
exposure variables and 10 covariates in the TIDES study10 (corre-
lated; see supplemental material, “TIDES Correlation Matrix” and
Figure S2). X was then separately quintile-transformed to get Xq.
Five of the mixture weights w were set to be high (0.15), and the
other five were set to be low (0.05). The intercept b0 was set to 2.
b1 was set to either 0 (when testing false positive rate), 0.2 (when
testing statistical power for the correlated data), or 0.3 (when test-
ing power for the uncorrelated data) based on values that gave
clear differences in power and false positive rate in repeated simu-
lations. The covariate coefficients c were half noise (values = 0)
and half signal (values = ½−0:63, 0:18,− 0:84, 1:60, 0:33� based
on the first five values provided by the R random normal deviate
algorithm with a standard normal distribution and when setting the
random seed to 1), and finally the error vector e was randomly
selected each time based on a standard normal distribution. We
ran 500 simulations for each scenario with a different random seed
leading to random differences in Xq, Z, and e based on the afore-
mentioned distributions. All WQSBS regressions were performed
using the default 100 bootstraps. The size of the WQSRS regres-
sion subsets was the default value of the closest integer less than
or equal to the square root of the number of mixture components,
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which for these simulations equaled 3. Given the small size of
these subsets, we doubled the default number of random subsets
for all WQSRS regressions to 200 to better allow for parameter
estimation comparable to the 100 bootstrap WQSBS models.
Repeated holdout WQSr used the default 100 iterations of 100
bootstraps or 200 random subsets each, and permutation test
WQSr used 200 iterations of 100 bootstraps or 200 random subsets
each for a minimal quantifiable p-value of 0.005. All WQSr mod-
els were run in the positive direction and with the additional direc-
tion constraint “b1_constr” set to be its default value of false. This
constraint is used to reduce the number of WQSr models failing to
return estimates in the specified direction, and results from identi-
cal simulations with this constraint set to be true are presented in
the supplemental materials. We chose the default value of 200
bootstraps for the QGC_Boot confidence intervals.

Measures chosen to evaluate simulation-derivedWQS coefficient
estimation performance included statistical power, the false positive
or Type I error rate (“FPR”), mean absolute percent error when the
true coefficient was nonzero (= 0:3 or 0:2 for the uncorrelated or cor-
related simulation, respectively; “MAPE”), coverage of the 95% CIs
when the true coefficientwas nonzero, andfinallymean absolute error
and 95% CI coverage when the true coefficient was zero (“MAE0”
and “Coverage0”). For simulation-derived weight estimates, weights
were rescaled as component-specific coefficients and MAPE was
determined for all simulations with nonzero WQS coefficients. For
the QGC models, only component-specific coefficient estimates >0
were considered in calculations to provide a more direct comparison
with the unidirectional estimates of theWQSrmodels. These mixture
component coefficient performance measures were separately eval-
uated for high (0.15) and low (0.05) weights to evaluate how
component-specific coefficient effect size impacted performance. All
calculationswere performedwith theR statistical computing software
(version 3.6.3; https://cran.r-project.org) using the packages gWQS
(version 3.0.4; https://cran.r-project.org/web/packages/gWQS) and
qgcomp (version 2.7.0; https://cran.r-project.org/web/packages/
qgcomp). The high-performance computing cluster at the Seattle
Children’s Research Institute was utilized for parallel computation
of all simulations using two 28-core 2 × 2:6GHz processors, each
with 512 GB RAM. Simulation and permutation test WQSr R code
is provided at https://github.com/drewdstat/WQSPermutationTest.

CANDLE Gestational Phthalate and IQ Data
To test each model on real data, we used CANDLE Study imple-
mented in Memphis, Tennessee, to associate gestational phthalate
exposure with age 4–6 y FSIQ in female children as previously
reported.11 CANDLE study procedures were approved by the
University of Tennessee Health Sciences Center institutional
review board, and all participants provided written informed con-
sent prior to engaging in study activities. Analyses for this study
were conducted as part of the ECHO PATHWAYS Consortium
and were approved by the University of Washington institutional
review board.We chose this outcome and the stratified female pop-
ulation because initial WQS_Nosplit model results indicated sig-
nificant results in both the positive and negative directions,
providing an interesting case for comparing results between mod-
els. A total of 444 mother–daughter dyads had complete data for
13 maternal third-trimester gestational urinary specific gravity-
adjusted phthalate concentrations, which we treated as exposure
mixture components, including, monomethyl phthalate (MMP),
monoethyl phthalate (MEP), monobutyl phthalate (MBP), monoi-
sobutyl phthalate (MiBP), monobenzyl phthalate (MBzP), mono
(2-ethylhexyl) phthalate (MEHP), mono(2-ethyl-5-oxohexyl)
phthalate (MEOHP), mono(2-ethyl-5-hydroxyhexyl) phthalate
(MEHHP), mono(2-ethyl-5-carboxypentyl) phthalate (MECPP),
mono(2-carboxymethylhexyl) phthalate (MCMHP), mono(3-

carboxypropyl) phthalate (MCPP), monocarboxyisooctyl phthal-
ate (MCIOP), and monocarboxyisononyl phthalate (MCINP). The
correlationmatrix for thesemetabolites is shown in Figure S3.

Following the primary analysis in Loftus et al., each of our
models included 19 covariates, which were selected a priori for
having known associations with both pediatric cognitive develop-
ment and phthalate exposure but not being on the causal pathway.11

Several of these covariates were collected during pregnancy,
including study site, maternal psychopathology score as assessed
by the Brief Symptom Inventory; maternal childcare knowledge
score as assessed by the Knowledge of Infant Development
Inventory; and maternal self-reported age, race, education, marital
status, medical insurance, prepregnancy body mass index, parity,
tobacco smoking, and income adjusted by household size, region,
and inflation. Addresses collected during pregnancy were used to
obtain educational, health and environment, and social and eco-
nomic Childhood Opportunity Index scores,24 each of which were
included as 3-degree of freedom cubic splines in the models. Year
of birth as abstracted from birth records was also included.
Additional covariates collected at the age 4–6 y visit included
maternal IQ as assessed by the Weschler Abbreviated Scales of
Intelligence, child age, and child breastfeeding history. In this
study population, 93% of participants identified as either Black or
White, and we dichotomized race as Black or non-Black to be con-
sistent with the published results that we are reanalyzing.11

Categorizations and collection timing for these covariates are
shown in Table S1. When covariates were expanded with dummy
variables into a model matrix, these represented 34 covariate col-
umns. Model estimates were compared across model types, using
the same numbers of bootstraps, random subsets, and/or iterations
used in the simulations for each respective model. A 28-core
2 × 2:6GHz processor with 512 GB RAMwas used to run models
on the CANDLEdata.

Results

Simulation Results—Mixture Coefficients
Figure 1 shows various performance measures of each model in
terms of the mixture coefficient, which is the positive WQS coef-
ficient for the WQSr models and the overall coefficient w for the
QGC models, when WQSr models had the “b1_constr” parameter
set to be false. Models were compared across simulations with ei-
ther uncorrelated or correlated exposure mixtures and covariates.
Nosplit forms of WQSBS and WQSRS had high false positive
rates (FPR=0:21–0:46 and 0.25–0.56, respectively), whereas
FPRs for the other models were between 0.01 and 0.07. Of those
models with approximately nominal FPRs, power was highest for
the WQSBS_PT (0.91–0.98) and WQSRS_PT (0.89–0.97) mod-
els. The QGC models with the nonbootstrapped CIs had similar
power to the bootstrapped versions (0.85–0.93 vs. 0.85–0.92).
The WQSr versions based on splitting the data had lower power,
which in order of descending power were the WQSBS_RH
(0.79–0.97), WQSRS_RH (0.60–0.97), WQSBS_Split (0.56–
0.78), and WQSRS_Split (0.40–0.76) models.

For true nonzero coefficients, error was similar across all mod-
els, though slightly higher for Split (MAPE=28:07–51:92%) and
RH WQSr models (22.79%–51.14%). These models had lower
error when the true coefficient was zero, with higher error in this
case being observed for the WQSBS_PT and WQSBS_Nosplit
models (MAE=0:06–0:14) and slightly lower for the WQSRS_PT
and WQSRS_Nosplit models (0.06–0.11). The coverage measures
for both true nonzero and zero coefficients suggest improper 95%CIs
for at least one simulation scenario for all models except the QGC
models (see supplemental material, “Confidence Interval Coverage
Results fromSimulations” and Figure S4).
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Cases in whichmodels failed to return any estimates in the pos-
itive direction were rare (0%–2%) for all models except the
WQSBS_RH models (35% under all true zero b1 scenarios),
WQSRS_RH models (26%–86%), and all other forms of WQSRS
models when in the scenario with true zero b1 and correlated pre-
dictors (11%–14%; see supplemental material, “Rates of WQSr
Models Failing to Estimate a Coefficient in the Desired Direction”
and Table S2). Internal PT model WQSr iterations failed to return
estimates in the positive direction in 0%–4% of iterations for all
scenarios except for WQSRS_PT models, for which this occurred
in 5%–19% of iterations with correlated predictors.

Mixture coefficient simulation results for models when the
“b1_constr” parameter was set to be true are shown in Figure S5.
Results were largely similar with slightly lower power for the Split
(0.39–0.77 vs. 0.40–0.78) and WQSBS_PT models (0.90–0.97 vs.
0.91–0.98), as well as slightly higher FPR for the WQSBS_RH
(0.07–0.08 vs. 0.03–0.05) and WQSRS_RH models (0.02–0.04
vs. 0.01–0.03). CI coverage raters were similar when using
the “b1_constr” constraint (Figure S5), except coverage for
WQSBS_RH models, when the true mixture coefficient was zero
increased from 0.60–0.62 to 0.92–0.93. Failure rates also dropped
when the “b1_constr” parameter was true as shown in Table S4,
with no WQSBS_RH model failures and WQSRS_RH failures
dropping to 7.6%–72% under true zero b1 conditions. There were
no internal WQSBS_PT model failures with the “b1_constr” con-
straint parameter, andWQSRS_PT internal failures were 0%–18%.

Simulation Results—Mixture Component Coefficients
Figure 2 shows MAPE for the mixture weights rescaled as
component-specific coefficients from simulations with either corre-
lated or uncorrelated predictors, separately evaluated for the higher
weights (weight = 0:15) and the lower weights (weight= 0:05)
when b1 is nonzero. Note that nonsplit and permutation test WQSr
component-specific coefficients are identical because the permuta-
tion test only provides a p-value for the WQS coefficient. Similarly,
the QGC_Boot and QGC_Noboot models only differ in their esti-
mates of the w overall mixture coefficient error, which does not
affect the component-specific coefficient values. WQSr mixture

component coefficient values were treated as zeros when the model
did not return estimates in the positive direction.

In general, errorwas lower for themore highlyweightedmixture
components than for those with lower weights, and error increased
as correlations between the mixture components increased with the
exception of WQSRS model error for the higher weights. The

Figure 1.Model performancemeasures for mixture coefficient estimates in 500 simulations for nonzero or zero mixture coefficients between correlation conditions.
Within each performance measure and simulation exposure correlation condition (i.e., uncorrelated predictors or correlated predictors with a variance-covariate
matrix derived from a real data set), lighter (yellow) tiles indicate better performance, whereas darker (purple) tiles indicate worse performance. Note: FPR, false
positive rate;MAPE, mean absolute percent error (when b1 is nonzero); MAE, mean absolute error (when b1 is zero); PT, permutation test; QGC, quantile g-compu-
tation; RH, repeated holdout;WQSBS, bootstrap weighted quantile sum regression;WQSRS, random subset weighted quantile sum regression.

Figure 2.MAPE for high and low mixture weight estimates rescaled as compo-
nent-specific coefficients in 500 simulations for nonzero mixture coefficients
between correlation conditions. Within each simulation exposure correlation
condition (i.e., uncorrelated predictors or correlated predictors with a variance-
covariate matrix derived from a real data set) and class of weights (i.e., high or
low), lighter (yellow/green) tiles indicate better performance, whereas darker
(blue/purple) tiles indicate worse performance. Note: FPR, false positive rate;
MAPE, mean absolute percent error (when b1 is nonzero); MAE, mean absolute
error (when b1 is zero); PT, permutation test; QGC, quantile g-computation;
RH, repeated holdout; WQSBS, bootstrap weighted quantile sum regression;
WQSRS, random subsetweighted quantile sum regression.
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WQSRS models tended to have lower error when predictors were
correlated but higher error when predictors were uncorrelated. For
the higher weights and among theWQSrmodels, the RH forms con-
sistently had the lowest error (MAPE=48:12%–61:69%), followed
by the Nosplit/PT models (49.45%–65.60%), and finally the Split
models (57.60%–71.70%). For the higher weights, the QGCmodels
had low error (51.31%) for high weights when predictors were
uncorrelated but the highest error (100.1%) when predictors were
correlated. For the lower weights, the RH WQSr models also
returned more accurate estimates of the component-specific coeffi-
cient values for lower weights (MAPE=52:91%–80:08%), fol-
lowed by the Split models (85.82%–120.21%), the Nosplit/PT
models (110.11%–128.56%), and finally theQGCmodels had partic-
ularly inaccurate estimates (140.29%–474.14%). Simulations with
the “b1_constr” constraint showed similar error values (Figure S6).

Prenatal Maternal Phthalate Mixtures and Child FSIQ in
the CANDLE Cohort
Model results in either the negative or positive direction or both direc-
tions combined without the “b1_constr” constraint for all WQSr are
shown in Figure 3, whereas the results with that constraint are shown
inFigureS7.Numeric values for the coefficients displayed in thesefig-
ures are shown inTable S3. Themodelswith the best balance of power
and FPR from the simulation analyses, namely both forms of PT
WQSr models, suggested nonsignificant results. The Nosplit WQSr
models as well as the WQSRS_Split model provided significant mix-
ture associations. For the negative direction, therewas an adverse, neg-
ative 1.7-point association between the phthalate mixture and FSIQ
with high weights for MBZP, MiBP, MMP, MCMHP, MEP, and
MBP provided by the WQSBS_Nosplit model with a p-value of 0.08
after the PT, and theWQSRS_Nosplitmodel hadonly a slightly differ-
ent 1.5-point negative association with a PT p-value of 0.08 and
similar weights except for a lower component-specific coefficient
for MEP. The significant positive associations all had high weight
only for MCINP and had magnitudes of 1.2, 1.1, and 1.4 for
WQSBS_Nosplit,WQSRS_Nosplit, andWQSRS_Split, respectively,
with the two Nosplit WQSr models having p-values of 0.30 and 0.36
after the PT, respectively. The other models varied in estimate value,
though the WQSRS_RH model failed to return any estimates in the
positive direction. The overall mixture coefficient estimates for both
directions combined provided by the QGC models trended negative
but were also nonsignificant. Internal iterations of the PTWQSrmod-
els did not return any estimates in the specified direction 1%–2%of the
time for WQSBS_PT and 17%–18% of the time for WQSRS_PT.
Results were similar when the “b1_constr” constraint was set to be
false (Figure S7), though the internal failure rate decreased to 0% for
WQSBS_PTand 4.5%–5.0% forWQSRS_PT.

The QGC models consistently had much larger mixture compo-
nent coefficient estimates than other models, corresponding to total
estimates of the mixture association in the positive direction (w+) of
3.2 and in the negative direction (w−) of −4:2, far greater than
the directional mixture coefficient estimates from the WQSr
models (WQS negative coefficient = − 1:7–0:4 and positive
coefficient = 0:4–1:4). Those metabolites with higher coefficients in
the QGC models did not necessarily correspond with more heavily
weighted metabolites in the other models. Differences between mix-
ture coefficient estimates returned by the QGC and WQSr models
were greater in the negative direction than in the positive direction.

Discussion

Overall Summary of Results across Models
After directly comparing model performance between most cur-
rent single mixture index regression models, our findings suggest

that the novel permutation test form of WQSr was best able to
balance high power and a nominal FPR under multiple simulation
scenarios. The PT WQSr models will enhance the field of mix-
ture exposure analysis by providing a more reliable means of
assessing mixture effects. Mixture exposure analysis improves on
analyzing each exposure in individual models by modeling the
cumulative impacts of exposures that occur simultaneously in
real life, reframing the effects of a given exposure in the context
of its coexposures and providing inference on how interventions
that can simultaneously impact multiple chemical concentrations
may improve public health.4 The WQSr permutation test better
achieves these objectives by a) providing a more sensitive and
specific way of determining the mixture effect and b) providing
better estimates of individual component effects with its nonlin-
ear optimization step than methods relying on nonregularized
multiple regression, such as those observed in our simulations for
the QGC models. The CANDLE data analysis shows that model
choice can affect the results and conclusions drawn from expo-
sure mixture analysis. In particular, these results highlighted how
unidirectional mixture effect estimates may be more informative,
because the WQSr results suggested at least some evidence of
negative and positive effects for different mixture components,
whereas the overall mixture effect estimate of the QGC models
suggested neither.

The PT WQSr models are a preferable modeling choice for
multiple analytic contexts. They provide benefits over QGC mod-
els when a unidirectional coefficient is desired and when
researchers want more accurate estimates of mixture component
weights. They can also provide benefits over the split WQSr
models by providing much more power and by avoiding stochas-
tic drift in model estimates caused by random splits in the data,
which are not performed in the PT WQSr method. The permuta-
tion test WQSr method also has several advantages over the
repeated holdout method, including that the PT WQSr models
maintain higher power than repeated holdout models in the case
of uncorrelated mixture components, and there is also a lower fre-
quency of models failing to return estimates when using the cur-
rent algorithms for those models. The PT WQSr method also has
a shorter overall computational time than the repeated holdout
WQSr because the permutation test need only be run for models
with significant mixture coefficients after the initial nonsplit
WQSr, whereas the iterative repeated holdout method must be
run each time. This is because the permutation test p-value will
almost always be more conservative than the nonsplit WQSr mix-
ture coefficient p-value, and therefore one could just run permuta-
tion tests on the subset of results that are significant during the
much quicker nonsplit WQSr step. In many cases this would
require running only a few models, which would allow time for
more accurate estimates because we would recommend increas-
ing the number of bootstraps and the number of permutations
when using the WQSBS_PT model, such as doing 200 permuta-
tions of 200-bootstrap models. For comparability, the test coeffi-
cient against which all permuted coefficients are compared
should also be from a WQSr run with 200 bootstraps. In short,
the PT WQSr are applicable to and preferable for any mixture ex-
posure analysis seeking to evaluate unidirectional, additive, and
linear mixture effects.

There was similar performance between WQSBS_PT and
WQSRS_PT models, with the slight differences likely being
primarily stochastic, though the increased probability of
WQSRS_PT model failure suggests using the bootstrap model
when possible. We expect that this performance would be even
better when increasing the number of WQSBS bootstraps or
WQSRS random subsets well beyond the default setting. The
additional directionality constraint “b1_constr” tended to make
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model performance measures slightly worse, but this may have
been in part stochastic, and differences were negligible.

Comparing Simulation Results to Prior Evaluations of
Mixture Exposure Model Performance
Our simulations involved several novel comparisons of exposure
mixtures analytical methods, as well as expanded on some com-
parisons already implemented in prior analyses. For instance,
though introduced in 20199 and since used in dozens of publica-
tions,25,26 repeated holdout WQSBS model performance has to

our knowledge never been assessed using simulated data before.
Our assessment of model performance under realistic simulation
parameters shows that though WQSBS_RH models have a nomi-
nal FPR, they are underpowered in the case of uncorrelated pre-
dictors and frequently failed to return estimates in the specified
direction. Our results suggests that the WQSBS_PT models out-
perform WQSBS_RH models in terms of assessing the WQS
coefficient. However, the WQSBS_RH models do perform favor-
ably in comparison with WQSBS_PT models in terms of mixture
component weight estimation, though the difference in error for
the more heavily weighted mixture components was small.

Figure 3.Mixture coefficient and component coefficient results for all models evaluating associations between prenatal maternal phthalate mixtures and female
child FSIQ in the CANDLE Cohort. The top forest plot shows means and 95% CIs for mixture coefficient estimates in the negative and positive directions for
WQSr models or for both directions for the QGC models. The bottom heat map shows the corresponding mixture component-specific coefficients for each
model, direction, and measured phthalate metabolite. These mixture component-specific coefficient values are color coded by value with darker red values
being more negative and darker blue values being more positive. These colors highlight the coefficient values in the bottom heat map; they do not contain any
information beyond the printed numeric values. Numeric values for the top forest plot are provided in Table S3. Note: CI, confidence interval; FSIQ, full scale
IQ; MBP, monobutyl phthalate; MBzP, monobenzyl phthalate; MCINP, monocarboxyisononyl phthalate; MCIOP, monocarboxyisooctyl phthalate; MCMHP,
mono(2-carboxymethylhexyl) phthalate; MCPP, mono(3-carboxypropyl) phthalate; MECPP, mono(2-ethyl-5-carboxypentyl) phthalate; MEHP, mono(2-ethyl-
hexyl) phthalate; MEHHP, mono(2-ethyl-5-hydroxyhexyl) phthalate; MEOHP, mono(2-ethyl-5-oxohexyl) phthalate; MEP, monoethyl phthalate; MiBP, monoi-
sobutyl phthalate; MMP, monomethyl phthalate; QGC, quantile g-computation; WQSR, weighted quantile sums regression.
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Simulations have previously compared the performance of
WQSRS_Split and WQSBS_Split models in evaluating larger
numbers of mixture components, namely 34 or 59, but the per-
formance of applying the random subset form of WQSr to the
more novel RH or PT models had not been previously tested.17

Our findings suggest similar top performance for the WQSRS
and WQSBS forms of the PT WQSr models, though power and
FPR are slightly better for the WQSBS form when predictors were
uncorrelated. We also observed that the Split, Nosplit, and RH
forms ofWQSRS performworse in balancing power and FPR than
the WQSBS forms in all tested models and scenarios, perhaps in
part because the random subsetmethodwas introduced specifically
for larger sets of mixture components. These novel findings sug-
gest that the random subset method will perform similarly well to
the bootstrap method when combined with the permutation test,
even when being applied to smaller numbers of mixture compo-
nents than it was originally designed to evaluate.

Quantile g-computation was introduced as an alternative to
WQSr, and when introduced it was directly compared against
WQSBS_Split models using several different simulation condi-
tions.16 There has been some criticism that these simulations may
have incorrectly assessed WQSr bias under certain simulation
conditions,8 and Keil et al. have since responded to that criticism
defending their methods.27 Similar to the Keil et al. findings
when assessing unidirectional simulations, quantile g-computa-
tion is more powerful and less biased than the WQSBS_Split
models in determining a mixture coefficient. However, they were
slightly underpowered in comparison with the PT WQSr models,
whereas both had comparably low bias and FPRs. Furthermore,
the mixture component-specific coefficients estimated by quantile
g-computation were far less accurate than those of any of the
WQSr models. This may be due to the QGC model relying on a
linear regression without regularization, whereas the WQSr is
able to return more accurate mixture component coefficient esti-
mates due to the internal optimization algorithm. Our findings
may differ from the Keil et al. findings because we tested alterna-
tive forms of WQSr and included a higher number of nonnoise
exposure variables and also covariates in our simulated models.
Our results suggest caution when interpreting quantile g-compu-
tation coefficients beyond the w total mixture effect parameter.
Additional simulations are needed to test the relative performance
of quantile g-computation with the various forms of WQSr under
different mixture scenarios.

Strengths and Limitations
Strengths of this study include demonstrating the viability and
advantages of using the permutation test WQSr using simulations
with realistic numbers of observations, variables, and correlation
structures, as well as comparing the model performance of several
recent advancements in mixture analysis that had not previously
been directly compared. We have created an R package wqspt that
implements the permutation test method described here as well as
versions for logistic WQS regression and other generalized linear
model forms ofWQS regression.

There are however some limitations of the permutation test
WQSr method as well as the simulations used in this study. First,
the permutation test WQSr takes a considerable amount of com-
putational time, comparable to the repeated holdout WQSr,
because one must repeat the entire WQSr process many times.
For the simulations performed in this study, a single-core compu-
tational unit in our computing cluster (roughly analogous to an
individual computer), WQSr permutation tests each took approxi-
mately 9 h to compute, which is similar to repeated holdout
WQSr. When using our 28-core computational unit for the
CANDLE data, which would otherwise take more time than the

simulated data due to the higher number of mixture components
and covariates, this process took approximately 3–4 h. The num-
ber of models requiring long run times with the permutation test
will be low for the aforementioned reason that only mixture com-
ponents significant in the Nosplit WQSr estimates need to
undergo the permutation test.

Another limitation of the permutation test is that it does not
produce CIs. It should be noted that our simulation results sug-
gest that no WQSr consistently produces valid 95% CIs, although
QGC models do, as is evidenced by only QGC showing 95% cov-
erage for its mixture coefficient CIs across simulation conditions
(Figure S4). Regarding the simulations, they are sufficient to as-
certain the relative performance of the permutation test WQS
regressions under a unidirectional mixture effect scenario, but it
is unclear how well our other WQSr methods would perform
when the true mixture effect is bidirectional or if nonlinear mix-
ture effects exist. This and other potential features of mixtures
analysis, such as unmeasured confounding, remain to be tested in
additional simulations. Furthermore, our simulations assume that
the quantile structure applied to the exposure mixture is accurate,
and so our simulations are unable to reveal how improper quanti-
zation may bias results. Future simulations may also incorporate
additional comparisons, because we have excluded mixture meth-
ods that are less comparable to single-index methods such as
Bayesian kernel machine regression, which models a flexible
response surface allowing for nonlinear and interactive effects
and does not lend itself to frequentist evaluations of statistical
power and other related measures.28 Another related method that
we excluded is the Bayesian WQSr, which differs substantially
from other WQSr methods by combining an overall, bidirectional
mixture effect coefficient with a simplex of weights.29 We did not
include this model in our comparisons because this method only
returns interpretable mixture weights under strict assumptions of
unidirectionality, which is not true for the other methods and lim-
its the utility of this model. An alternative form of WQSr was
recently published that replaces bootstrapping with L1 or L2
penalization to induce sparsity in mixture weights, in addition to
utilizing a different version of the permutation test for sampling
the null distribution.30 Simulations from that study suggest favor-
able performance in comparison with Split WQSr, but future
analyses will be necessary to determine how the Lyden et al.
method compares with our own permutation test method or the
other models we tested in our study.

Conclusions
Adding a permutation test step to the bootstrap WQSr balanced
high statistical power and a low FPR in detecting a directional,
additive mixture effect. In our simulations this model outper-
formed other existing models in terms of these parameters,
suggesting that it should be adopted to most reliably detect cumu-
lative, additive associations between mixture exposures and out-
comes. Continued refinement of mixture exposure models will
improve our ability to understand and mitigate the health impacts
of exposure to complex mixtures, and we believe this permuta-
tion test method for the WQSr advances our ability to character-
ize mixture exposure health effects.
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